Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem
نویسندگان
چکیده
In singular models, the Bayes estimation, commonly, has the advantage of the generalization performance over the maximum likelihood estimation, however, its accurate approximation using Markov chain Monte Carlo methods requires huge computational costs. The variational Bayes (VB) approach, a tractable alternative, has recently shown good performance in the automatic relevance determination model (ARD), a kind of hierarchical Bayesian learning, in brain current estimation from magnetoencephalography (MEG) data, an ill-posed linear inverse problem. On the other hand, it has been proved that, in three-layer linear neural networks (LNNs), the VB approach is asymptotically equivalent to a positive-part James-Stein type shrinkage estimation. In this paper, noting the similarity between the ARD in a linear problem and an LNN, we analyze a simplified version of the VB approach in the ARD. We discuss its relation to the shrinkage estimation and how ill-posedness affects learning. We also propose the algorithm that requires simpler computation than, and will provide similar performance to, the VB approach.
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملExamination of Quadrotor Inverse Simulation Problem Using Trust-Region Dogleg Solution Method
In this paper, the particular solution technique for inverse simulation applied to the quadrotor maneuvering flight is investigated. The trust-region dogleg (DL) technique which is proposed alleviates the weakness of Newton’s method used for numerical differentiation of system states in the solution process. The proposed technique emphasizes global convergence solution to the inverse simulatio...
متن کامل